© Copyright 2014, SVM Universal Design Consortium LLC. All rights reserved. Disclaimer

Wave Power Generation

Wave power is the transport of energy by ocean surface waves, and the capture of that energy to do useful work — for example for electricity generation, desalination, or the pumping of water (into reservoirs). Wave power is a renewable energy source.

Though often co-mingled, wave power is distinct from the diurnal flux of tidal power and the steady gyre of ocean currents. Wave power generation is not currently a widely employed commercial technology although there have been attempts at using it since at least 1890. The world's first commercial wave farm is based in Portugal, at the Aguçadora Wave Park, which consists of three 750 kilowatt Pelamis devices.

Physical concepts

Waves are generated by wind passing over the sea: as long as the waves propagate slower than the wind speed just above the waves, there is an energy transfer from the wind to the most energetic waves. Both air pressure differences between the upwind and the lee side of a wave crest, as well as friction on the water surface by the wind shear stress cause the growth of the waves. The wave height increases with increases in (see Ocean surface wave):

wind speed,

time duration of the wind blowing,

fetch — the distance of open water that the wind has blown over, and

water depth (in case of shallow water effects, for water depths less than half the wavelength).

In general, large waves are more powerful. Specifically, wave power is determined by wave height, wave speed, wavelength, and water density.

Wave size is determined by wind speed and fetch (the distance over which the wind excites the waves) and by the depth and topography of the seafloor (which can focus or disperse the energy of the waves). A given wind speed has a matching practical limit over which time or distance will not produce larger waves. This limit is called a "fully developed sea."

Oscillatory motion is highest at the surface and diminishes exponentially with depth. However, for standing waves (clapotis) near a reflecting coast, wave energy is also present as pressure oscillations at great depth, producing microseisms. These pressure fluctuations at greater depth are too small to be interesting from the point of view of wave power.

The waves propagate on the ocean surface, and the wave energy is also transported horizontally with the group velocity. The mean transport rate of the wave energy through a vertical plane of unit width, parallel to a wave crest, is called the wave energy flux (or wave power, which must not be confused with the actual power generated by a wave power device).

Modern technology

Wave power devices are generally categorized by the method used to capture the energy of the waves. They can also be categorized by location and power take-off system. Method types are point absorber or buoy; surfacing following or attenuator; terminator, lining perpendicular to wave propagation; oscillating water column; and overtopping. Locations are shoreline, nearshore and offshore. Types of power take-off include: hydraulic ram, elastomeric hose pump, pump-to-shore, hydroelectric turbine, air turbine, and linear electrical generator. Some of these designs incorporate parabolic reflectors as a means of increasing the wave energy at the point of capture.

In the United States, the Pacific Northwest Generating Cooperative is funding the building of a commercial wave-power park at Reedsport, Oregon. The project will utilize the PowerBuoy technology which consists of modular, ocean-going buoys. The rising and falling of the waves moves the buoy-like structure creating mechanical energy which is converted into electricity and transmitted to shore over a submerged transmission line. A 40 kW buoy has a diameter of 12 feet (4 m) and is 52 feet (16 m) long, with approximately 13 feet of the unit rising above the ocean surface. Using the three-point mooring system, they are designed to be installed one to five miles (8 km) offshore in water 100 to 200 feet (60 m) deep.

An example of a surface following device is the Pelamis Wave Energy Converter. The sections of the device articulate with the movement of the waves, each resisting motion between it and the next section, creating pressurized oil to drive a hydraulic ram which drives a hydraulic motor. The machine is long and narrow (snake-like) and points into the waves; it attenuates the waves, gathering more energy than its narrow profile suggests. Its articulating sections drive internal hydraulic generators (through the use of pumps and accumulators).

With the Wave Dragon wave energy converter large "arms" focus waves up a ramp into an offshore reservoir. The water returns to the ocean by the force of gravity via hydroelectric generators.

The AquaBuOY, made by Finavera Renewables Inc., wave energy device: Energy transfer takes place by converting the vertical component of wave kinetic energy into pressurized seawater by means of two-stroke hose pumps. Pressurized seawater is directed into a conversion system consisting of a turbine driving an electrical generator. The power is transmitted to shore by means of a secure, undersea transmission line. A commercial wave power production facility utilizing the AquaBuOY technology is beginning initial construction in Portugal. The company has 250 MW of projects planned or under development on the west coast of North America.

A device called CETO, currently being tested off Fremantle, Western Australia, consists of a single piston pump attached to the sea floor, with a float tethered to the piston. Waves cause the float to rise and fall, generating pressurized water, which is piped to an onshore facility to drive hydraulic generators or run reverse osmosis desalination.

Another type of wave buoys,using special polymeres, is being developed by SRI

Wave farms

The world's first commercial wave farm opened in 2008 at the Aguçadora Wave Park near Póvoa de Varzim in Portugal. It uses three Pelamis P-750 machines with a total installed capacity of 2.25MW. A second phase of the project is now planned to increase the installed capacity to 21MW using a further 25 Pelamis machines.

Funding for a 3MW wave farm in Scotland was announced on February 20, 2007 by the Scottish Executive, at a cost of over 4 million pounds, as part of a £13 million funding packages for marine power in Scotland. The farm will be the world's largest with a capacity of 3MW generated by four Pelamis machines.

Funding has also been announced for the development of a Wave hub off the north coast of Cornwall, England. The Wave hub will act as giant extension cable, allowing arrays of wave energy generating devices to be connected to the electricity grid. The Wave hub will initially allow 20MW of capacity to be connected with potential expansion to 40MW. Four device manufacturers have so far expressed interest in connecting to the Wave hub.

The scientists have calculated that wave energy gathered at Wave Hub will be enough to power up to 7,500 households. Savings that the Cornwall wave power generator will bring are significant: about 300,000 tons of carbon dioxide in the next 25 years.

A CETO wave farm of the coast of Western Australia has been operating to prove commercial viability and after preliminary environmental approval is poised for further development. One benefit of CETO is that the buoys that capture the wave motion are submersed and therefore, are not a visual pollutant. Furthermore, the underwater deployment makes them less prone to storm damage.


The waves and current of some places on earth are so strong that some researchers and scientist have focused primarily on them for for there renewable energy source.

The front of the Pelamis machine bursting through a wave at the Agucadoura Wave Park

The Anaconda prototype is 25cm in diameter and in varying lengths with a simulated power take-off. Eventually, a turbine will use a unidirectional flow between high and low pressure tanks in the tail (water flows into one tank and out of the other thanks to one-way valves). Work with 50cm diameter tubes will investigate behaviour in different wave conditions, measure various parameters, and estimate power output.

Oscillating Water Column (OWC)


This method of generating power from the tide works by using a column of water as a piston to pump air and drive a turbine to generate power. This type of device can be fixed to the seabed or installed on shore.


In Scotland, the Government awarded three wave energy projects under the Scottish Renewables Obligation. Only one of these projects has been realised and is generating power in Scotland as this pack is being written, this is the LIMPET 500 on the Island of Islay of the west coast, enabling the Island to take a step towards becoming self sufficient in renewable energy.

Return to Top