© Copyright 2014, SVM Universal Design Consortium LLC. All rights reserved. Disclaimer

Direct Current (DC)

Direct current (DC) is the unidirectional flow of electric charge. Direct current is produced by such sources as batteries, thermocouples, solar cells, and commutator-type electric machines of the dynamo type. Direct current may flow in a conductor such as a wire, but can also be through semiconductors, insulators, or even through a vacuum as in electron or ion beams. In direct current, the electric charges flow in a constant direction, distinguishing it from alternating current (AC). A term formerly used for direct current was Galvanic current.

Direct current may be obtained from an alternating current supply by use of a current-switching arrangement called a rectifier, which contains electronic elements (usually) or electromechanical elements (historically) that allow current to flow only in one direction. Direct current may be made into alternating current with an inverter or a motor-generator set.

The first commercial electric power transmission (developed by Thomas Edison in the late nineteenth century) used direct current. Because of the advantage of alternating current over direct current in transforming and transmission, electric power distribution today is nearly all alternating current. For applications requiring direct current, such as third rail power systems, alternating current is distributed to a substation, which utilizes a rectifier to convert the power to direct current.

Direct current is used to charge batteries, and in nearly all electronic systems as the power supply. Very large quantities of direct-current power are used in production of aluminum and other electrochemical processes. Direct current is used for some railway propulsion, especially in urban areas. High voltage direct current is used to transmit large amounts of power from remote generation sites or to interconnect alternating current power grids.

Various definitions

Within electrical engineering, the term DC is used to refer to power systems that use only one polarity of voltage or current, and to refer to the constant, zero-frequency, or slowly varying local mean value of a voltage or current. For example, the voltage across a DC voltage source is constant as is the current through a DC current source. The DC solution of an electric circuit is the solution where all voltages and currents are constant. It can be shown that any stationary voltage or current waveform can be decomposed into a sum of a DC component and a zero-mean time-varying component; the DC component is defined to be the expected value, or the average value of the voltage or current over all time.

Although DC stands for "Direct Current", DC sometimes refers to "constant polarity." With this definition, DC voltages can vary in time, such as the raw output of a rectifier or the fluctuating voice signal on a telephone line.

Some forms of DC (such as that produced by a voltage regulator) have almost no variations in voltage, but may still have variations in output power and current.


Thomas Alva Edison (February 11, 1847 – October 18, 1931) was an American inventor and businessman.

Illistration showing how direct current works to power a light bulb.

Batteries are a good example of Direct Current (DC)

Return to Top